CIDNP Effects of Sensitized Photochemical Dediazoniation of Arene Diazonium Salts Manipulating CIDNP Intensities by the Experimental Conditions

نویسندگان

  • Dietmar Pfeifer
  • Reiner Radeglia
چکیده

13C and 15N photo-CIDNP effects were determined for the reversible electron transfer from pyrene to arene diazonium salts on excitation of the charge transfer band at 360 nm. The diazonium salts being the products of back electron transfer ("cage products") show enhanced absorption for 13C(1) and the 15N-enriched diazonium group, whereas the escape products, ArH or löN2, respectively, yield emission signals. It was shown that the intensities of the CIDNP effects depend on the rates of intersystem crossing kjSC within the geminate radical pair, i.e. on the magnetic nucleus used as a probe of the CIDNP effect. Using iH, 13C or 15N the time domain of observation can be manipulated in the ranges of 90-100 ns, 15-20 ns and 3-5 ns, respectively. Furthermore, the CIDNP intensities depend on the proper balance of the rate of electron back transfer, k_e, and the rate kp of formation of the escape product. Since k_e increases with increasing energy of the geminate radical pair, this balance and therefore the CIDNP intensities vary according to the substituent present and the electron donor used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zeitschrift für Naturforschung / A / 27 (1972)

The magnetic field dependence of CIDNP is presented for two reaction products of independently generated alkyl radicals. It is shown that nuclear spin relaxation of the products influences the intensity distributions within multiplets, and how this relaxation can be included in the calculation of CIDNP effects from the radical pair theory. Analysis of the experimental results supports the recen...

متن کامل

Action Spectroscopy on Dense Samples of Photosynthetic Reaction Centers of Rhodobacter sphaeroides WT Based on Nanosecond Laser-Flash 13C Photo-CIDNP MAS NMR

Photochemically induced dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance (photo-CIDNP MAS NMR) allows for the investigation of the electronic structure of the photochemical machinery of photosynthetic reaction centers (RCs) at atomic resolution. For such experiments, either continuous radiation from white xenon lamps or green laser pulses are applied to optically den...

متن کامل

Electron and hydrogen self-exchange of free radicals of sterically hindered tertiary aliphatic amines investigated by photo-CIDNP

The photoreactions of diazabicyclo[2,2,2]octane (DABCO) and triisopropylamine (TIPA) with the sensitizers anthraquinone (AQ) and xanthone (XA) or benzophenone (BP) were investigated by time-resolved photo-CIDNP (photochemically induced dynamic nuclear polarization) experiments. By varying the radical-pair concentration, it was ensured that these measurements respond only to self-exchange reacti...

متن کامل

Base free aryl coupling of diazonium compounds and boronic esters: self-activation allowing an overall highly practical process.

Boronic esters have long been considered as poor partners in cross-coupling reactions with arene diazoniums. Here is reported an unprecedented application of self-activated boronic esters in a base-free cross-coupling reaction with diazonium salts under mild and user friendly conditions.

متن کامل

Level crossing analysis of chemically induced dynamic nuclear polarization: Towards a common description of liquid-state and solid-state cases.

Chemically Induced Dynamic Nuclear Polarization (CIDNP) is an efficient method of creating non-equilibrium polarization of nuclear spins by using chemical reactions, which have radical pairs as intermediates. The CIDNP effect originates from (i) electron spin-selective recombination of radical pairs and (ii) the dependence of the inter-system crossing rate in radical pairs on the state of magne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012